Repair of oxidized bases in the extremely radiation-resistant bacterium Deinococcus radiodurans.
نویسندگان
چکیده
Deinococcus radiodurans is able to resist and survive extreme DNA damage induced by ionizing radiation and many other DNA-damaging agents. It is believed that it possesses highly efficient DNA repair mechanisms. To characterize the repair pathway of oxidized purines in this bacteria, we have purified, from crude extracts, proteins that recognize these oxidized bases. We report here that D. radiodurans possesses two proteins excising the oxidized purines (formamidopyrimidine and 8-oxoguanine) by a DNA glycosylase-a purinic/apyrimidine lyase mechanism. Moreover, one of those proteins is endowed with a thymine glycol DNA glycosylase activity. One of these proteins could be the homolog of the Escherichia coli Fpg enzyme, which confirms the existence of a base excision repair system in this bacteria.
منابع مشابه
A Decade of Biochemical and Structural Studies of the DNA Repair Machinery of Deinococcus radiodurans: Major Findings, Functional and Mechanistic Insight and Challenges
The Deinococcus radiodurans bacterium is extremely resistant to ionising radiation and desiccation and can withstand a 200-fold higher radiation dose than most other bacteria with no loss of viability. The mechanisms behind this extreme resistance are not fully understood, but it is clear that several factors contribute to this phenotype. Efficient scavenging of reactive oxygen species and repa...
متن کاملBackground Mutational Features of the Radiation-Resistant Bacterium Deinococcus radiodurans.
Deinococcus bacteria are extremely resistant to radiation, oxidation, and desiccation. Resilience to these factors has been suggested to be due to enhanced damage prevention and repair mechanisms, as well as highly efficient antioxidant protection systems. Here, using mutation-accumulation experiments, we find that the GC-rich Deinococcus radiodurans has an overall background genomic mutation r...
متن کاملFunctional characterization of a DNA repair polymerase from a radiation resistant bacterium, Deinococcus radiodurans
Cells exposed to DNA damaging agents, produce different types of structural changes in the chromosome. Repair of these lesions requires synthesis of new DNA molecules, catalysed by specific DNA polymerases. A putative DNA polymerase has been characterized, for its role in DNA damage repair and radiation resistance in D. radiodurans, a bacterium best known for its extraordinary resistance to ...
متن کاملA model for repair of radiation-induced DNA double-strand breaks in the extreme radiophile Deinococcus radiodurans.
The bacterium Deinococcus (formerly Micrococcus) radiodurans and other members of the eubacterial family Deinococaceae are extremely resistant to ionizing radiation and many other agents that damage DNA. Stationary phase D. radiodurans exposed to 1.0-1.5 Mrad gamma-irradiation sustains > 120 DNA double-strand breaks (dsbs) per chromosome; these dsbs are mended over a period of hours with 100% s...
متن کاملGenome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics.
The bacterium Deinococcus radiodurans shows remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation, oxidizing agents, and electrophilic mutagens. D. radiodurans is best known for its extreme resistance to ionizing radiation; not only can it grow continuously in the presence of chronic radiation (6 kilorads/h), but also it can survive acute exposures t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 181 1 شماره
صفحات -
تاریخ انتشار 1999